振孔式精密播种机主要部件的设计与试验

来源 :农机化研究 | 被引量 : 0次 | 上传用户:liangpask
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
设计了一种振孔式排种器,以实现精密播种。试验结果表明:当振孔式排种盘处于工作状态时,由于击振器的敲击作用,产生受迫振动,提高了充种效果,提升了型孔的填充率。工作时,因为敲击震动有一定的强制投种作用,提高了投种频率,从而使机具的作业速度得以提高,降低了作业机具的粒距变异系数,且可对玉米、高粱、各种豆类等作物实行单粒精密播种。
其他文献
随着农业科技的发展,机器人在农业生产方面的应用日益广泛,但机器人受地形环境的影响较大,不能保证农业信息采集的连续性,容易导致农业信息采集不完整、不准确.为此,设计了基
小区试验是良种优选、不同品种之间进行对比试验重要的手段和方法,随着小区播种机技术的完善与应用,已成为目前种子繁育的重要保障之一。为解决现有的大豆精播排种器存在净种困难的问题,设计了一种基于电控的自动净种窝眼轮式大豆播种器。播种器采用两个步进电机共同控制排种和净种过程,利用脉冲发生器发出的脉冲当量来控制排种轴转速和净种板开闭角度,从而实现育种过程中的单粒播种和快速净种。在排种器试验台上进行性能试验,结果表明:播种器可实现播种和净种功能,漏播指数≤0.10%,重播指数≤1.22%,株距变异系数≤2.98%,净
以水田作业环境和无人农机作业要求为依据,设计并搭建了一种采用电驱动的机器人移动平台,主要包含行走底盘和控制系统。行走底盘由主机架、电力驱动系统、行走总成、转向总成和提升机构等组成;控制系统以STM32F407IGT6为主控制器,利用测速编码器、角度传感器、AT9S遥控器及R9D无线模块等设备,实现了机器人平台的远程遥控行驶控制。平台搭载GPS-RTK导航系统进行了轨迹追踪试验,结果表明:水田作业机
首先,对ADAMS动力学仿真过程进行了分析和介绍,采用SolidWorks三维机械设计软件建立采摘机器人虚拟样机;然后,建立了采摘机器人动力学方程并进行了动力学分析,并利用ADAMS软件进行了仿真。仿真结果表明:采摘机器人末端执行器在各坐标轴上的速度和加速度都比较稳定光滑,各个时间端没有间断点,表明采摘机器人各个关节在实际的采摘过程中工作稳定,没有明显冲击,机械结构符合要求。
为解决小麦播种过程中播深一致难以控制的问题,设计了一种具有播深控制装置的双轴旋耕播种机.机组采用前旋耕刀组正转深旋,后旋耕刀组反转浅旋抛土,后置播深控制装置铲土板与
稻田杂草主要在水稻秧苗封行前与其竞争水肥光等资源,也为病虫害提供滋生条件.由于目前主要防控方式为除草剂无选择性地喷施,造成大量的农药浪费和环境污染.由于除草剂针对杂
嫁接是硬枝苗木育苗中的重要环节,然而由于硬枝嫁接存在不同品种切削力差异大且需要保证其形成层对齐等问题,导致硬枝嫁接自动化程度低.为此,结合自动化硬枝嫁接装置现状,针
针对全自动移栽机取苗易伤苗、转移钵苗时机构冲击大等问题,结合新疆育苗农艺要求,设计了一种摆杆式取苗机构;根据取苗作业要求,规划了钵苗转移路径和各运动副的运动姿态,并构建直角坐标系;利用位姿方程,求解出末端执行器参数方程;通过软件仿真计算出机构取苗轨迹,表明轨迹满足预期轨迹设计要求。样机试验表明:平均取苗成功率为97.1%,基质损伤苗率为2.9%,茎杆损伤率为1.3%,机构可靠性较高,对钵苗的损伤较小,可为开展移栽装备的全自动化研究提供参考。
针对叶菜类种子粒径小且无规则形状、传统播种机存在精量化程度不高及播种成功率低等问题。以气吸针式播种方式为基础,设计了一种气吸针式摇摆叶菜精量播种机,并采用笔型气缸将直线往复运动转化为播种机摇摆往复运动来实现气缸运动一次完成两次播种。设计了导种结构代替传统播种机垂直运动方向的机械结构,并加入了振动装置使种子处于高频振动状态,提高种子吸附成功率的同时,也避免了种子间相互粘连。依据叶菜种子的三维尺寸,通过理论计算得出了实现种子吸附的临界气流速度为10.1m/s,且采用仿真软件对播种机核心部件笔型气缸的量程、吸嘴
设计了一种钉齿滚扎式残膜回收机的拾膜机构,通过分析拾膜机构的运动轨迹得到了影响拾膜机构拾膜率的主要因素,并对机具的行进速度、拾膜钉齿的入土深度及拾膜机构与卸膜机构的传动比3个因素进行了正交试验。试验表明:钉齿入土深度对拾膜率具有显著的作用,机具行进速度对拾膜率具有极显著的影响;机具的最优工作参数为:机具前进速度为3.6km/h,钉齿入土深度为50mm,拾膜机构与卸膜机构的传动比为1∶3。