论文部分内容阅读
目的:通过挖掘电子病历文本中的信息,探索有效的文本挖掘方法,以期实现电子病历的决策支持价值。方法:将2500份胃癌患者电子病历随机分为训练组和测试组,利用词典结合统计的方法对训练组病历文本进行分词,根据每个切分词与从病历中抽取的治疗方案的共现频次对切分词进行聚类,统计训练组病历中的文本在各个聚类中词的匹配数,并以训练组病历文本在各类中的匹配词数和治疗方案建立起Bayes判别函数作为决策支持模型,对测试组病历进行验证,对分词方法及判别模型进行评价。结果:随机抽取50份发现分词召回率为74.24%,准确率为8