论文部分内容阅读
信息时代下,苹果产业的“资源仓库”是科技发展的重要保障。为了实现资源的深层次利用,就必须对其进行整合。以我国现有的苹果数据库、数据平台、网站、实体机构及纸质文献为数据源来构建数据库,包括生产数据库、种质资源数据库、育种数据库、栽培数据库、采后加工数据库、产业经济数据库、基础数据库、叙词库9个部分。通过知识抽取、标引和关联构建来实现数据的深加工和整合,形成新的知识库后将知识产品输出可以提供基于数据整合的相关服务。基于架构设计进行本地测试,通过具体案例演示证明和实现了我国苹果产业数据资源分布的分析、相关检索词整合和高频词整合。基于检索词进行检索后可以实现以其为中心的数据整合和知识整合,展示出知识之间的关联,挖掘出数据间的多维度知识关联关系。苹果产业科学数据整合的框架设计,可以将我国苹果产业多源化、多类型的数据融合到一起,打通数据之间的关联关系,使各类数据交织渗透。数据经过整合后可以提供更深层次的知识服务,减少了获取数据的知识成本。
In the information age, Apple’s “resource warehouse” is an important guarantee for the development of science and technology. In order to realize the deep utilization of resources, it must be integrated. Based on the existing apple databases, data platforms, websites, physical institutions and paper documents in our country, this paper constructs a database including production database, germplasm database, breeding database, cultivation database, post-harvest processing database, industrial economic database, Basic database, thesaurus 9 parts. Through knowledge extraction, indexing and correlation construction to achieve the data processing and integration, the formation of a new knowledge base after the output of knowledge-based data integration services can be provided. Based on the architecture design, this paper carries on the local testing, demonstrates and realizes the distribution of apple industry data resources in our country, the integration of relevant search terms and the integration of high-frequency words through the case demonstration. After retrieval based on the search term, the data integration and knowledge integration can be realized, the correlation between knowledge can be demonstrated, and the multi-dimensional knowledge relation between data can be found out. Apple industry science data integration framework design, the apple industry in China can be multi-source, multi-type data together, open up the relationship between the data, so that all kinds of data intertwined. Once integrated, the data can provide deeper knowledge services and reduce the knowledge cost of acquiring data.