论文部分内容阅读
为了改善神经网络的电能质量扰动识别能力,提出了一种改进型神经网络。在分析了传统BP神经网络和遗传算法优化BP神经网络(GA—BP)的基础上,将遗传算法和贝叶斯正则化神经网络相结合,并采用小波包能量熵作为特征向量。改进后的神经网络能有效克服传统BP神经网络易陷入局部最小,GA—BP易出现过拟合现象且网络节点数偏多等缺点。在MATLAB平台上建立各种电能质量扰动信号的仿真模型,分别采用传统BP神经网络、GA—BP及改进型神经网络进行扰动识别对比。仿真结果表明,改进后的神经网络显著提高了识别正确率。