论文部分内容阅读
交叉口是城市路网的核心和枢纽,合理优化交叉口的信号控制可以极大地提高城市交通体系的运行效率,而将实时交通信息作为输入并动态调整交通信号灯的相位时间成为了当前研究的重要方向。文中提出了一种基于D3QN(Double Deep Q-Learning Network with Dueling Architecture)深度强化学习模型的交通信号控制方法,其利用深度学习网络,结合交通信号控制机构成了一个用于调整交叉口信号控制策略的智能体,然后采用DTSE(离散交通状态编码)方法将交叉口的交通状态转换为由车辆的位置