论文部分内容阅读
针对图像语义分割不能在提高分割速率的同时改善分割结果的问题,基于深度学习和图像去噪的方法提出一种对图像进行预处理再输入到图像语义模型中解决方法。该方法通过使用大量数据集训练网络模型,再将预处理图像进行去噪之后输入到训练好的网络模型中,利用SegNet网络作为分割网络模型完成道路图像的实时语义分割和基于差异系数的稀疏自适应度去噪算法完成对图像的预处理。实验证明,对图像进行去噪处理之后再分割能够再不增加计算量的基础上有效的提高分割精度。