论文部分内容阅读
条纹斑竹鲨具有较高的经济价值和医用研究价值。人工驯养对环境和温度等因素要求较高,时常出现大规模病死现象。利用视频图像量化分析鱼体运动行为,有助于进行异常识别和早期预警,将有效提高养殖养护水平。该研究针对人工驯养的条纹斑竹鲨鱼,提出一种基于深度神经网络的语义部位分割方法,并将分割结果应用于剖析条斑鲨鱼体运动姿态。首先,依据条斑鲨形态特征将其划分为7个可视的身体组成构件(头部、右胸鳍、左胸鳍、右腹鳍、左腹鳍、躯干、尾巴);再对全景养殖监控视频中抽取的476幅条斑鲨子图进行各部位的像素级标记,通过数据增强到19