论文部分内容阅读
为了提高正交频分复用(OFDM)无线通信系统的信号检测能力,提出了一种基于深度学习(DL)算法的信号检测框架来代替系统信号检测模块.首先利用迫零(ZF)均衡器重构深度神经网络(DNN)的输入;然后在离线训练中增加预训练阶段,以导频符号和数据符号作为训练数据,为训练阶段提供良好的初始参数;最后在线信号检测通过加载离线训练获得的最优参数进行信号检测.实验结果表明:当信噪比(SNR)为25 dB时,无预训练阶段和无ZF均衡器的框架性能相对于完整的DL信号检测框架性能分别损失了2和4 dB;在导频符号数目减少和无