论文部分内容阅读
理解血管网络新生的时间模式,有助于生物体发育机制研究和肿瘤等疾病的生理病理研究。提出以可解释卷积神经网络(CNN)研究鸡胚胎卵黄膜的血管新生时间模式的方法。基于CNN建立受精3 d后(3dpf)和4 d后(4dpf)的鸡胚胎血管网络图像的分类模型,以梯度加权的类激活映射(Grad-CAM)技术解释发育过程中血管网络形态拓扑的变化模式,并以此分类模型分析3dpf~4dpf之间血管新生的时间特性。实验共计观察17枚受精卵,结果显示最优模型区分3dpf与4dpf的血管图像的准确率达到98.62%。通过Grad-