论文部分内容阅读
本文将KD-Tree应用到KNN文本分类算法中,先对训练文本集建立一个KD-Tree,然后在KD-Tree中搜索测试文本的所有祖先节点文本,这些祖先节点文本集合就是待测文本的最邻近文本集合,与测试文本有最大相似度的祖先的文本类型就是待测试文本的类型,这种算法大大减少了参与比较的向量文本数目,时间复杂度仅为O(log2N)。实验表明,改进后的KNN文本分类算法具有比传统KNN文本分类法更高的分类效率。