论文部分内容阅读
针对小麦病害诊断过程的复杂性以及处理信息的不确定性,综合了粗糙集理论与BP神经网络的各自优势,构建了小麦病害诊断模型。首先是对连续的样本数据进行离散化,主要采用差别矩阵计算方法进行启发式知识约简,得到最小简化规则,然后把约简结果作为BP神经网络的输入结点。实验结果表明,采用该方法不仅优化了神经网络的拓扑结构,还降低了神经网络的训练时间,同时大大提高了学习速度和故障诊断的准确率。