论文部分内容阅读
经验模态分解(EMD)算法非常适合非稳定序列信号、非线性序列信号以及复杂信号的分解,具有很高的噪声比。序列信号经过EMD分解为本征模函数(IMF)以及残差序列,所分解出来的IMF包含了原序列信号不同时间尺度的局部特征信号,是整个原序列的"去杂"反映。针对IMF所包含的不同尺度的特征这一特性,给出用EMD分解原始序列信号,提取其全部有限个本征模函数和残差序列,根据不同的IMF所包含原序列的特征信息量的大小引入信息权重w,然后通过欧氏距离对各个序列不同IMF序列进行相似匹配判定,最后通过综合各个IMF所