论文部分内容阅读
从规则获取和类别预报两方面研究支持向量机(SVM)方法在决策系统知识发现中的应用. 对于规则获取, 用SVM对决策系统进行条件属性约简并提取特征对象, 进而基于较少的特征对象提取规则, 使得规则获取的难度和速度都有所改善; 对于类别预报, 利用SVM对决策系统的对象进行分类, 得到一个简单的判决函数. 该判决函数可以完成对样本的类别预报, 起到与决策规则类似的作用, 而且此方法比传统方法简单易行. 实验表明, 将SVM方法用于决策系统的知识发现, 不仅简便可行, 而且可以提高速度. 对于较大的决策系统更能