高中数学设疑教学

来源 :成功•教育 | 被引量 : 0次 | 上传用户:Holden
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  在高中数学教学中,教师根据课堂情况、学生的心理状态和教学内容的不同,适时地提出经过精心设计、目的明确的问题,这对启发学生的积极思维和学好数学有很大的作用。本文就高中数学教学设疑谈谈自己的浅见。
  
  一、教学要从问题开始
  
  思维自疑问和惊奇开始,在教学中可设计一个学生不易回答的悬念或者一个有趣的故事,激发学生强烈的求知欲望,起到启示诱导的作用。如在教授等差数列求和公式时,教师先讲了一个数学小故事:德国的“数学王子”高斯,在小学读书时,老师出了一道算术题:1+2+3+……+100=?老师刚读完题目,高斯就在他的小黑板上写出了答案:5050,其他同学还在一个数一个数的挨个相加呢。那么,高斯是用什么方法做得这么快呢?这时学生出现惊疑,产生一种强烈的探究反响。这就是今天要讲的等差数列的求和方法——倒序相加法。
  
  二、设疑于重点和难点
  
  教材中有些内容是枯燥乏味,艰涩难懂的。如数列的极限概念及无穷等比数列各项和的概念比较抽象,是难点。如对于0.9=1这一等式,有些同学学完了数列的极限这一节后仍表怀疑。为此,一位教师在教学中插入了一段“关于分牛传说的析疑”的故事:传说古代印度有一位老人,临终前留下遗嘱,要把19头牛分给三个儿子。老大分总数的1/2,老二分总数的1/4,老三分总数的1/5。按印度的教规,牛被视为神灵,不能宰杀,只能整头分,先人的遗嘱更必须无条件遵从。老人死后,三兄弟为分牛一事而绞尽脑汁,却计无所出,最后决定诉诸官府。官府一筹莫展,便以“清官难断家务事”为由,一推了之。邻村智叟知道了,说:“这好办!我有一头牛借给你们。这样,总共就有20头牛。老大分1/2可得10头;老二分1/4可得5头;老三分1/5可得4头。你等三人共分去19头牛,剩下的一头牛再还我!”真是妙极了!不过,后来人们在钦佩之余总带有一丝怀疑。老大似乎只该分9.5头,最后他怎么竟得了10头呢?学生很感兴趣。老师经过分析使问题转化为学生所学的无穷等比,数列各项和公式S=a1/(1-q)(|q|<1)的应用。寓解疑于趣味之中。
  
  三、设疑于教材易出错之处
  
  学生在学习数学的过程中最常见的错误是,不顾条件或研究范围的变化,丢三掉四,或解完一道题后不检查、不思考。故在学生易出错之处,让学生去尝试,去“碰壁”和“跌跤”,让学生充分“暴露问题”,然后顺其错误认真剖析,不断引导,使学生恍然大悟,留下深刻印象。如:若函数f(X)=aX2+2aX+1图象都在X轴上方,求实数a的取值范围。学生因思维定势的影响,往往错解为a>0且(2a)2-4a<0,得出0<1,而忽略了a=0的情况。
  
  四、设疑于结尾
  
  一堂好课也应设“问题”而终,使其完而未完,意味无穷。在一堂课结束时,据知识的系统,承上启下地提出新的问题,这样一方面可以使新旧知识有机地联系起来,同时可以激发起学生新的求知欲望,为下一节课的教学作好充分的心理准备。一堂好课不是讲完了就完了,而是词已尽,意无穷。如在解不等式(X2-3X+2)/(X2-2X-3)<0时,一位教师先利用学生已有的知识解决这个问题,即采用解两个不等式组来解决,接着,又用如下的解法:原不等式可化为:(X2-3X+2)(X2-2X-3)<0即(X-1)(X-2)(X-3)(X+1)<0,所以原不等式解集为:{X|-1
其他文献
冬去春来,寒暑交替,不知不觉中《继续教育》杂志已经走过了18年的风雨历程,回首杂志的发展轨迹,是一个整体质量不断提高、主流影响力不断扩大的过程,我们欣喜的看到18年前我们满怀希望与梦想播下的一粒种子正在逐渐的成长为一颗绿意盎然的大树。今天,知识经济时代来临,人才强国战略实施,学习化社会、终身教育理念已经深入人心,继续教育迎来了难得的发展机遇,我们依然在锐意进取、执著前行、未敢懈怠。《继续教育》杂志