论文部分内容阅读
针对一类复杂的无法对其机理建模的离散时间系统,根据采集的两年工艺参数数据,结合复杂工艺特点,提出了基于数据驱动的系统动态特性建模方法,构建了时间序列受控回归滑动平均(CARMA)胞映射模型;在模型结构确定的基础上,采用改进的量子行为粒子群优化(IQPSO)算法对系统参数进行辨识;算法通过设计新的粒子更新式增加了粒子的多样性,避免了算法的早熟收敛;算法通过在后期将搜索到的最优值传递给神经元作为初始权值,利用神经元增强算法的局部搜索能力,实现了算法探索与开发的平衡,达到对模型参数进行快速精确辨识的目的;在转化