基于汉语复句的语义相关度计算及类别的标识

来源 :计算机科学 | 被引量 : 0次 | 上传用户:wspywps110
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
语义相关度计算作为中文信息处理领域中的一项关键技术,在信息检索、语义消岐、文本分类中起着重要的作用。利用汉语复句的句法理论和关系标记搭配理论,以汉语复句语料库以及搜索引擎获取的复句为语料,提出了一种基于汉语复句的语义相关度计算方法——SRCCS。本方法不仅能够计算词语的相关度,而且能够表明相关的性质与类别。与通过短文计算相关度的方法相比,本方法选取的计算对象范围更小,因而结果更准确,计算复杂度更低。在同一测试集上与搜索引擎方法的对比分析证明了基于汉语复句的语义相关度计算方法的有效性与优越性。
其他文献
灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了
针对目前有监督词义消歧方法存在的数据稀疏问题,提出一种基于上下文翻译的词义消歧方法。该方法假设由歧义词上下文的译文所组成的语境与原上下文语境所表述的意义相似。根
针对融合规则带来的虚假边缘、伪影等问题,提出了改进拉普拉斯能量和(Sum-modified Laplacian,SML)和脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)相结合的非下采样Contourlet变换(Non-Sampled Contourlet Transform,NSCT)域融合方法。首先,采用NSCT将每幅源图像分解成包含基本信息的低频子带图像