论文部分内容阅读
细菌觅食算法在求解优化问题时,以固定的步长进行趋向操作,同时以固定概率对细菌个体进行随机驱散操作,虽然可以一定程度上增加种群多样性,但是在进化后期容易使优秀的个体流失,影响算法的寻优质量.针对上述问题,论文提出步长自适应调整和驱散概率自适应调整两项改进策略,分别根据算法进化程度和细菌个体的能量值动态调整趋向操作的步长和驱散操作的概率,从而使算法在保证种群多样性的前提下,保持细菌个体具有较高觅食能力,促进算法局部搜索和全局优化的平衡.对标准测试函数和TSP问题的测试结果表明:基于自学习的细菌觅食算法具有较强