论文部分内容阅读
任意n∈N+,伪Smarandache无平方因子函数Zw(n)定义为最小的正整数m,满足n|m^n.Z(n)定义为最小的正整数k,满足n|(k(k+1))/2.用初等方法研究了方程Zw(Z(n))-Z(Zw(n))=0的可解性,并证明了该方程有无穷多个正整数解.同时给出了不等式Zw(Z(n))-Z(Zw(n))〈0和Zw(Z(n))-Z(Zw(n))〉0的正整数解.