论文部分内容阅读
针对现有车道线识别算法难以自适应地匹配图像,在车辆过弯途中识别率低,鲁棒性和实时性较差的问题,提出并实现了一种整体最优阈值的快速车道线识别算法.该算法首先对图像进行自适应二值化分割;然后对图像中的感兴趣区域进行提取;提出逐行检索的方法进行车道线内侧特征点的筛选,从而得到实际车道的左右标志线参数以进行道路模型重建.结果表明:区别于以往常用的霍夫变换,此方法具有更好的实时性及准确性,可在车辆过弯途中为系统提供更多的有效信息.