基于关键点序列的人体动作识别

来源 :机器人 | 被引量 : 0次 | 上传用户:houtou27
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在不同的光照及视角下,为了实现人体日常生活动作的高识别率,提出了一种基于Kinect的识别方法.首先,受到人类进行动作识别时往往关注局部细节动作的启发,层次化地处理了采集到的人体关节点数据:通过判断躯干关节点位置变化的缓慢程度,将动作粗分类为上肢动作和躯干动作;之后对于上肢动作,关注手部关节轨迹变化,而对于躯干动作,关注中心关节点轨迹.然后,通过C均值聚类法从这两类轨迹中提取关键点,并将动作的轨迹映射到相应的关键点,得到每组粗分类动作的关键点序列.并提出了时序直方图的概念用以建模关键点序列.再通过比较轨迹间关键点序列的相似性,完成动作识别任务.最后,将该算法应用于采集的数据集合,得到了99%的识别正确率,表明算法能够有效地完成人体动作识别任务. In order to achieve a high recognition rate of human daily life movements under different light and visual angles, a Kinect-based recognition method is proposed.Firstly, when human beings recognize the motion, they often focus on the action of local details and hierarchically handle Collected human joint point data: by judging the degree of trunk joint position changes slowly, the action is roughly classified as upper limb movements and torso movements; followed by upper limb movements, hand joints trajectory changes, while the trunk movements, focus on the center joint Then the key points are extracted from these two types of trajectories by C-means clustering method, and the trajectories of the actions are mapped to the corresponding key points, and the key points of each group of rough classification actions are obtained, and the timing histogram Is used to model the sequence of key points.And then the motion recognition task is completed by comparing the similarity of the key points between trajectories.Finally, the algorithm is applied to the collected data sets, and the recognition accuracy of 99% is obtained, which shows that the algorithm Can effectively complete the task of human motion recognition.
其他文献
水稻加工在智能工厂模式下,可以大幅度减少加工增碎与降低碾减率。以籼米中的黄花粘与丰良优作为比对品种,将原来加工中的增碎由25%~30%降低到20%~22%,将原来13%左右的碾减率降
在小学语文教学中,教师可以在指导学生展开文本细读的时候将德育内容渗透进去,以促使学生全面进步。当学生在分析人物时感受到高尚的人格,在剖析字词时体会到积极的情感,在梳
  新型高分子材料进入药剂领域,推动了药物缓控释剂型的发展。这些高分子材料以不同方式组合到制剂中,起到控制药物的释放速率,释放时间以及释放部位的作用。笔者通过对缓控释