论文部分内容阅读
针对传统C-V模型收敛速度慢且不完全适合灰度不均匀图像分割的问题,提出基于参数化全散度的C-V模型及其相应的快速阈值分割算法。将全散度引入传统C-V模型并获得一种改进的区域活动轮廓模型,然后,采用水平集和变分法相结合得到该模型所对应的偏微分方程,并通过数值求解该方程获得适合图像分割的快速迭代算法。实验结果表明,该方法分割效果及收敛速度明显提高,且具有较高的鲁棒性和抗噪性。