论文部分内容阅读
提出一种基于深度学习与一致性表示空间学习的方法,针对图像与文本2种模态,分别采用卷积神经网络模型和潜在狄利克雷分布算法学习图像的深度特征和文档的主题概率分布;通过一个概率模型将两个高度异构的向量空间非线性映射到一个一致性表示空间;采用中心相关性算法计算不同模态信息在此空间的距离.在Wikipedia Dataset上的实验结果表明:在单模态输入检索中,文中方法的平均准确率为38.43%,相比于其他方法有明显提高.