论文部分内容阅读
提出了一种基于LSH(locality sensitive hashing,局部敏感散列)算法处理时间子序列匹配问题的方法LSHSM。不同于FRM和Dual Match方法,该方法不需要对时间序列做DFT、DWT等特征变换,而是直接把序列看成高维数据点,利用LSH能处理高维数据的特性来查找相似时间子序列。实验采用3种不同的时间序列数据集,通过与线性扫描算法比较,验证了算法的有效性,性能有很大的提高。