论文部分内容阅读
针对支持向量机在大规模样本学习时,学习速度慢,需要存储空间大等问题,提出了一种将支持向量机方法与C均值方法结合的CM-SVM方法。在该方法中,先采用C均值方法对训练样本集进行聚类,然后依据聚类域中样本的类型特点确定样本的约简方式。仿真图像实验结果表明,CM—SVM方法提高了支持向量机的学习速度,同时支持向量机的分类精度几乎没有降低,表现出较好的样本约简性能。