论文部分内容阅读
针对图像采集和传输过程中所产生噪声导致后续图像处理能力下降的问题,提出基于生成对抗网络(GAN)的多通道图像去噪算法。所提算法将含噪彩色图像分离为RGB三通道,各通道基于具有相同架构的端到端可训练的GAN实现去噪。GAN生成网络基于U-net衍生网络以及残差块构建,从而可参考低级特征信息以有效提取深度特征进而避免丢失细节信息;判别网络则基于全卷积网络构造,因而可获得像素级分类从而提升判别精确性。此外,为改善去噪能力且尽可能保留图像细节信息,所构建去噪网络基于对抗损失、视觉感知损失和均方误差损失这3类