论文部分内容阅读
课程分类对其设计、实施及评价十分重要。混合课程的动态设计和实施、个性化评价以及学习预警研究都要求数据驱动的课程分类,然而这种分类方法目前尚在探索中。该研究选取某高校网络教学平台中2018年秋季学期2456门混合课程的在线数据作为样本,提出了一种依据学生在线学习行为聚类特征对混合课程进行分类的方法,并采用2020年春季学期的1851门混合课程对该分类方法的稳定性进行了验证。结果表明:(1)该方法通过机器学习算法对混合课程中的学生在线学习行为进行聚类并提取每类学生的典型特征,并据此将混合课程分为可以自动识别的