论文部分内容阅读
本文研究由若干个非因果自回归(auto regression,AR)序列叠加产生的多道时间序列的分解与复原问题.首先从序列的独立性出发,利用序列的高阶统计信息,采用独立成分分析(independent component analysis,ICA)中的广义信息最大化(Infomax)算法寻找一可逆矩阵将混合序列进行分离,然后设计了一种基于高阶统计量的自回归模型的辨识算法,算法中将非因果AR系统看成由因果和反因果系统的极联,在每次迭代中先估计反因果AR的阶数和参数,然后再估计因果AR的阶数和参数,由选用的线