喷涂机器人涂装系统及涂装缺陷分析

来源 :机械设计与制造 | 被引量 : 0次 | 上传用户:yangyang502
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
根据统计过程控制理论设计了漆膜膜厚检测分析系统,介绍了膜厚检测分析系统的设计理念,以及系统中对漆膜危险趋势评判的标准,利用大数据分析漆膜厚度变化的原因,并且在此基础上优化喷涂工艺参数。阐述了喷涂工艺参数中的喷涂流量、整形空气流量、静电电压以及旋杯转速对涂装质量的影响,重点分析了生产中容易产生的批量漆膜缺陷实例,并且对生产中反复出现的漆膜缺陷进行分析,阐述缺陷的形成机理,根据缺陷形成机理设计解决方案以解决批量工艺缺陷问题。
其他文献
目前在电池分选及成组过程中,大多数企业还不能完全实现自动化,需要靠人工辅助完成整个作业,因此本文提出采用基于改进的模糊聚类算法,利用电池自动检测平台并结合尺寸链优化技术,实现电池分选成组的自动化。首先,利用自动检测平台获取动力电池性能参数。然后,使用智能算法对电池进行首次分选。最终,对首次分选后的电池利用尺寸链优化技术实现电池成组。实验表明,此方案可以在动态流水线上自动完成电池的分选和成组,不仅保证了电池的电性能和几何性能,而且减少了工人作业时间,提高了企业的生产效率,满足企业的需求。
为了获得液压减振器内部温度的分布状况,提高减振器的可靠性,对减振器的生热机理进行了分析研究。基于CFD的数值方法,建立了较高精度的减振器三维流体模型,在FLUENT软件中进行了仿真分析,获得了减振器在不同工况下的温度场分布云图,分析研究了不同油液参数对温度场的影响,并进行了试验验证。结果表明:高温度场主要分布在减振器活塞孔和复原阀周围;减振器活塞速度越大,减振器内部温度越高;油液参数不同,对应的油液热平衡温度也不同。此方法为解决液压减振器高温漏油和失效等问题提供了一定的参考价值。
滤芯是DPF内的重要功能实现单元,DPF内空间较小,滤芯位置的不同会影响滤芯前端的气体流动情况、颗粒物沉积特性及DPF的整体压降特性等。对DPF滤芯不同安装位置对于滤芯前端气体流动特性的影响进行了研究,利用CFD软件计算了滤芯在不同位置时滤芯入口端面上的轴向速度、湍动能等参数,使用均匀性指数衡量不同滤芯位置对气流分布的影响,结果表明:均匀性指数影响整体压降的变化,不同位置滤芯的均匀性指数相差约3%,相对应位置的压降相差约2.2%。
采用直径为180mm单层电镀CBN砂轮在不同磨削参数下对AISI 1045钢进行高速缓进给窄深槽磨削试验,通过三维表面轮廓仪(SM-100)、维氏硬度计(HMV-G21ST)和金相显微镜(MM-4XCC)检
针对当前复杂零件难以精密加工的问题,运用磨粒流技术进行光整加工,考虑入口压力和颗粒浓度双因素对磨粒流加工的影响,以弯管为研究对象,依据流体力学理论,对不同入口压力和颗粒浓度下的速度、湍流动能和总压进行了仿真分析,经过对比分析得出结论:当入口压力为6MPa,颗粒浓度为10%,磨粒流的抛光效果最好,并根据此参数进行了磨粒流抛光试验。试验结果表明:弯管内表面的粗糙度降低,但是出口处的表面粗糙度要高于入口处的表面粗糙度,因此选择以出口为磨粒流入口,重复进行试验,最终得到均匀一致的表面。
选择以液冷板作为电动车辆动力电池冷却方式的热管理系统为研究对象,采用仿真模拟的方法,应用有限元仿真软件Ansys建立动力电池-液冷换热器耦合模型,对不同截面流道下的液冷板对动力电池组温度分布的影响进行了研究,并以此为基础,提出导热强化方案,对比分析铝片与石墨片两种导热材料对于控制电池组温度与改善电池组温均性的影响。结果表明:正方形截面流道较圆形截面流道更能有效降低电池组最高温度及流道进出口压差,但同时会增加电池组的温度不均匀性;导热强化方案可有效改善电池组温均性,但在控制电池组最高温度方面作用不明显,并且
深孔加工技术广泛应用于航空航天领域,钛合金由于其难加工性对深孔加工提出了巨大挑战。提出了一种基于麻花钻深孔钻削钛合金的在线温度测量方法。通过全因素实验,分析了钛合金加工表面质量和加工硬化现象。试验结果表明切削速度对钻削温度有很大影响,当切削速度过大时,表面质量迅速恶化,产生表面烧伤和严重的加工硬化现象,进给速度对钻削温度略有影响。综合分析后推荐用于干切削条件下TC4钛合金深孔钻削的切削参数为20m/min,0.08mm/rev。
采用大气等离子喷涂方法在Q235钢基体上制备了不同等离子弧功率的Al2O3-13wt%TiO2涂层,粒度为(20~40)μm。采用扫描电镜、X射线衍射仪和能谱仪等对涂层微观形貌、相组织结构进行表征,测定了涂层截面孔隙率、沉积厚度、显微硬度以及干摩擦磨损性能。等离子弧功率为29640W时涂层质量较好,截面显微硬度达1145 HV0.2、沉积厚度为338μm,孔隙率为3.9%,干摩擦磨性能最佳。在较大载荷下犁沟效应明显,涂层失效形式表现为颗粒剥
使用普通晶粒度硬质合金YG8和超细晶硬质合金YG8UF两种材料刀具,分别对GH2132高温合金进行了干式切削试验,对比了两种刀具在不同切削速度条件下的切削力和刀-屑摩擦系数,测定了刀具后刀面的平均磨损宽度VB值,借助扫描电镜观察了刀具后刀面的磨损形貌,同时对刀具的磨损机理进行了分析。结果表明,晶粒细化可以使切削力降低,刀-屑间平均摩擦系数减小。当切削速度达到65m/min后,超细晶硬质合金刀具YG8UF的使用寿命是普通晶粒度硬质合金刀具YG8的(3~4)倍。超细晶硬质合金刀具比通晶粒度硬质合金刀具具有更好
为了探究阶梯状微织构在刀具表面存在的作用及其相关机理,并获取最优的织构参数,利用激光加工设备在硬质合金刀具表面加工出不同参数的凹坑织构,利用摩擦磨损试验机进行销盘式摩擦磨损实验,并通过车床进行了切削铝合金的实验。结果表明,当刀具表面凹坑织构的直径为65μm、凹坑深度为15μm时,与无织构表面相比,具有凹坑织构表面的摩擦系数降低了43.5%,与硬质合金相对磨的铝合金销的磨损量减小了40.2%,在切削加工中具有织构纹理的刀具的主切削力降低了10.4%。从上述结果来看,刀具表面的阶梯状微织构能够有效起到减摩降磨