论文部分内容阅读
提出了一种基于双重竞争共振机制的模糊ART神经网络模型.该模型将输入节点的竞争共振机制引入到输出类别节点,采用输入节点和输出节点双重竞争共振机制,形成了一种新的模糊ART结构,解决了传统模糊ART网络记忆不稳定问题.将该模型应用于图像分割,解决了传统模糊ART网络图像分割结果随警戒参数的升高而出现的过度分割.实验结果表明,和原始模糊ART算法相比,新算法具有更好的分类识别性能,在飞机目标识别中平均识别率比原始算法提高3%~5%.