论文部分内容阅读
为了自动地进行图像的多值分割,从原始图像与分割图像之间的相互关系出发,以最大互信息为优化分割目标,以互信息熵差作为一种新的分类类数判据,在对传统脉冲耦合神经网络模型改进的基础上,提出了一种基于最大互信息改进型脉冲耦合神经网络图像多值分割算法.理论分析和实验结果表明,该方法能够自动确定最佳分割迭代次数及最佳分割灰度类数,对分割图像具有良好的特征划分能力,且在分割类数较少的情况下,能较好地保持图像细节、纹理及边缘等信息,对不同图像分割准确度高,具有较强的适用性.