论文部分内容阅读
针对部分高可靠性产品退化规律无法掌握的难题,提出了使用改进粒子群优化一基于神经网络函数(PSO-RBFNN)算法拟合样品退化轨迹、预测伪寿命值的方法。首先,通过改进PSO算法对RBFNN进行训练优化;然后,使用部分测量数据对训练后的RBFNN进行准确度测试;最后,通过RBFNN预测样品退化轨迹,估计出伪寿命值。使用某型电连接器的加速退化试验数据对提出的方法进行了试验验证,成功对该型电连接器进行了寿命预测,得出平均寿命为200412h。