一种石墨高效剥离成石墨烯的新策略

来源 :新型炭材料 | 被引量 : 0次 | 上传用户:buffon149
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超声剥离法被认为是由石墨制备石墨烯最方便、最清洁的方法,但在溶剂中大量处理石墨时,其产率较低,且超声剥离后的石墨难以进一步再被剥离为石墨烯,造成大量的资源浪费.因此本文提出了一种超声与研磨相结合的高效剥离石墨制石墨烯的新策略.结果表明,超声剥离后不能再被剥离的石墨经超声和研磨处理后,可进一步剥离为石墨烯,石墨烯收率可达4.73%.产生这种现象的原因可能是由于石墨层的规则堆叠被破坏,且产生了卷曲的石墨边缘,这些均为溶剂进入石墨层间克服作用力提供了“楔入点”.获得的石墨烯片层均小于10层.该工作为石墨大规模高效剥离制少缺陷石墨烯提供了一种新策略.“,”Ultrasonication is regarded as the most convenient and cleanest approach for graphene preparation from graphite. However, the yields are low in large scale preparation because after ultrasonication the exfoliated graphite is difficult to exfoliate in-to graphene, which leads to a great deal of waste. A new strategy for the efficient exfoliation of the exfoliated graphite into graphene was investigated by combining ultrasonication and grinding treatments. Results indicated that the exfoliated graphite produced by ul-trasonication could be further exfoliated into graphene by combining ultrasonication and grinding. The obtained graphene sheets were all comprised of fewer than 10 layers with a yield of 4.73%. This was attributed to the destruction of the regular stacking of the graphite layers and scrolling and folding their edges to provide entry points for the solvent to overcome the interlayer forces between adjacent layers. This work provides a new strategy for the efficient exfoliation of graphite into few-defect graphene on a large scale.
其他文献
锂硫电池由于其高能量密度和低廉的价格,将在未来的储能领域得到广泛应用.然而,它面临许多挑战,特别是在硫的负载和可溶性多硫化物的穿梭效应方面.为了解决这些问题,本文设计了一种三维多级孔炭材料(3D-HPC)作为锂硫电池中硫的载体.采用模板法,在去除模板剂聚甲基丙烯酸甲酯和氧化锌后得到了三维多孔结构.电镜和BET测试表明相互连通的大孔道与大量的大尺寸介孔协同构成了三维导电碳网络.三维网络有利于离子和电子的转移,同时通过较大尺寸的孔缓解阴极的体积膨胀,多级孔通过毛细凝结抑制了穿梭效应.电化学测试结果表明,3D-
水热炭化是一种类似煤矿化过程将生物质低能耗转化为炭材料的方法,但这种方法得到的水热炭比表面积较低,限制了其直接作为吸附剂在CO2捕集方面的应用.本文以壳聚糖为前体通过水热炭化联合低浓度KOH活化,制备出高比表面积氮掺杂多孔炭材料,采用氮气物理吸附仪、扫描电镜(SEM)和X-射线衍射仪(XRD)研究水热炭化过程中熔融盐和活化温度对多孔炭材料孔结构及其CO2吸附性能的影响.结果表明升高活化温度能够有效增加孔隙率.水热过程中存在的熔融盐在600和700℃活化时会引起比表面积适度降低,这是由于存在的盐可能在水热炭
在炭基电极材料中引入氧化还原赝电容是提升其比电容的有效手段,有望解决炭基超级电容器低能量密度的瓶颈.本文通过原位电化学氧化,在B、N掺杂二维纳米炭片电极上引入电化学活性含氧官能团,以显著提升炭基电极的赝电容,并研究了B、N掺杂炭在不同氧化工艺下的表面组成和电容性能变化.结果表明,B、N掺杂可以提升氧化电极的电子传输和电荷转移,有效促进电化学氧化效果,提高电极的赝电容.此外,相比于恒压氧化工艺,循环伏安氧化方法可以有效提升炭电极的氧化深度和总氧含量,并且也有利于选择性地生成以电化学活性的醌基为主的含氧官能团
具有独特三维框架结构的钠超离子导体型磷酸钒钠是非常具有前景的钠电正极材料.在本工作中,两种碳源被选择作为原材料,通过溶胶凝胶法制备了碳包覆的磷酸钒钠.深入研究了不同炭材料对晶体结构、形貌特征、动力学特性以及电化学储钠特性的影响.结果表明柠檬酸作为碳源制备得到的磷酸钒钠,具有更大的晶胞体积和更小的粒子尺寸,导致了拓宽的离子迁移通道和缩短的离子迁移路径,进而提高动力学特性.该材料表现出优异的电化学特性,在0.1 C下可以释放112.3 mAh g?1的容量.在1 C循环200圈下容量保持率接近100%.由于快
通过煅烧前驱体聚磷腈,制备了掺杂N,P和O的羧基官能化炭材料(CS―COOH).利用TEM,SEM,XPS和FTIR技术确定了CS―COOH结构.研究了CS―COOH从水溶液中吸附U(VI)情况,结果表明,吸附动力学符合准二级动力学模型,通过Langmuir模型计算得到在298 K下材料的最大吸附量为402.9 mg/g.CS―COOH在5次吸附-解吸循环后表现出良好的吸附结果.根据XPS分析,材料较好的U(VI)吸附能力主要归因于羧基及杂原子与铀酰离子之间的强共价键结合.“,”A N, S, P co-
基于浒苔中海藻酸钙的“蛋盒”结构,对浒苔炭化产物进行盐酸酸洗处理,去除海藻酸钙中的钙离子,形成“蛋盒”式初始孔结构.以酸洗处理后的炭化产物为前驱体,采用KOH活化法制备浒苔基分级多孔活性炭,并研究活性炭的孔结构特性及电化学性能.研究表明:浒苔基活性炭具有分级多孔结构,其比表面积(SBET)高达3283 m2 g?1,其中介孔提供了66%以上的比表面积.当用作超级电容器电极材料时,即使在较高的电流密度下,浒苔基活性炭也表现出优异的电化学性能.当电流密度为0.1 A g?1时,浒苔基活性炭的比电容为361 F
将废弃资源转化为能源储存材料是一种变废为宝,解决当前能源短缺、改善环境问题的新方向.本文采用熔盐一步炭化活化法,结合聚磷酸铵(APP)共掺杂技术,将废旧棉织物制备出氮/磷共掺杂的棉基活性炭材料.通过扫描电镜(SEM)、氮气吸附脱附仪(BET)、拉曼光谱仪(Raman)和X射线光电子能谱仪(XPS)对材料的形貌、结构和成分进行表征分析,同时使用循环伏安(CV)、恒流充放电(GCD)对材料的电化学性能进行测试.结果表明,将废旧棉织物与APP混合后,在ZnCl2/KCl熔盐介质中经炭化活化处理得到氮/磷共掺杂活
本文利用混酸氧化以及乙二胺接枝的方法得到羟基和氨基官能化炭纤维(CF―OH和CF―NH2),之后进行磺化聚醚醚酮上浆处理,制备了热塑性上浆剂涂层改性的功能化炭纤维(CF―OH―SPEEK以及CF―NH2―SPEEK),并研究表面官能团对热塑性涂层改性炭纤维表面以及复合材料界面性质的影响.结果表明,经表面功能化处理后,炭纤维的表面官能团含量以及表面润湿能力得到了明显的提高.核磁氢谱分析显示,引入的—OH、—NH2等基团与磺化聚醚醚酮发生化学反应,提高炭纤维和上浆涂层之间的结合能力.因此,与磺化聚醚醚酮直接涂
以蔗糖溶液为炭前驱体,通过简单的水热炭化和KOH/NaOH碱活化方法制备微/介孔炭球.研究了KOH和NaOH活化参数对炭球比表面积和相应孔径分布的影响.炭球作为超级电容器电极,在6 mol L?1 KOH电解液中具有高的比电容和良好的倍率性能.此外,在1 mol L?1 MeEt3NBF4/PC有机电解液中,微/介孔炭球电极组成的对称电容器表现出高达30.4 Wh kg?1的能量密度和18.5 kW kg?1的功率密度.在5 A g?1的电流密度下,充放电循环15000次后比容量保持率为73.0%.“,”
本文分别将不同配比的30 mm定长炭纤维与乙烯基树脂基体预混合,搅拌均匀后得到片状模塑料(SMCs),再将不同纤维体积分数的SMCs通过真空热压成型工艺制备出不同面内力学各向同性的定长炭纤维增强树脂基复合材料(CFRP).研究了不同纤维体积分数(15%~40%)的CFRP的拉伸和弯曲强度的异同,及纤维体积分数对材料面内力学各向同性特征的影响.由力学性能测试与断面分析结果可知:25%~30%纤维体积分数的CFRP中,纤维在树脂中分散性优异,不同方向上的拉伸强度离散系数仅为2%,各向同性特征最为显著;当CFR