NONLINEAR STABILITY OF RAREFACTION WAVES FOR A COMPRESSIBLE MICROPOLAR FLUID MODEL WITH ZERO HEAT CO

来源 :数学物理学报(英文版) | 被引量 : 0次 | 上传用户:hamjh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In 2018,Duan[1]studied the case of zero heat conductivity for a one-dimensional compressible micropolar fluid model.Due to the absence of heat conductivity,it is quite difficult to close the energy estimates.He considered the far-field states of the initial datato be constants;that is,limx→±∞(v0,u0,ω0,θ0)(x) =(1,0,0,1).He proved that the solution tends asymptotically to those constants.In this article,under the same hypothesis that the heat conductivity is zero,we consider the far-field states of the initial data to be different constants-that is,limx→±∞(v0,u0,ω0,θ0)(x) =(v±,u±,0,θ±)-and we prove that if both the initial perturbation and the strength of the rarefaction waves are assumed to be suitably small,the Cauchy problem admits a unique global solution that tends time-asymptotically toward the combination of two rarefaction waves from different families.
其他文献
近年来关于虚拟现实技术在数字城市、数字化校园等数字化社区中应用的讨论越来越多,虚拟现实技术和GIS(地理信息系统)技术的结合已成为公认的数字城市的关键技术。虚拟现实和
超过6100万粉丝、11.4亿点赞、1550个作品、290多场直播……这是从2018年8月新华社官方抖音、快手、微视号开通后,一份简单直接的数据“成绩单”.数据背后更重要的是,新华社
期刊
In this paper,we study the global existence of weak solutions for the Cauchy problem of the nonlinear hyperbolic system of three equations (1.1) with bounded in