论文部分内容阅读
介绍一种新的基于高阶累积量的ARMA模型的递推盲辨识算法,并对ARMA模型的盲辨识方法进行了仿真研究,同时与常用的方法(残余时间序列法、q切片法、Newton法)进行了比较和分析。仿真结果表明,该算法具有良好的收敛性和准确性,运行速度快。特别是随着系统的阶次的增加,速度提高越明显。由于在计算中引入高阶累积量,因而该算法还可抑制高斯噪声的于扰。在此基础上,将该方法应用到机械故障诊断中,并进行实验研究,实验结果表明,该方法是有效的。