非共现数据的二元化加权转化算法

来源 :模式识别与人工智能 | 被引量 : 0次 | 上传用户:liuzujnrui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
面向范畴数据的序列化信息瓶颈算法(CD—sIB)假设数据各个属性特征对二元化转化的贡献均匀,从而影响转化效果.文中提出二元化加权转化方法来反映非共现数据的特征.该方法通过突出非共现数据的代表性属性,从抑制非代表性(冗余)属性,从而获取最佳共现表示.文中提出随机分布数据的适用性和计算方法的无监督性两个非共现加权原则,并基于加权粒度概念构造二元化加权转化算法.实验结果表明,文中算法的聚类精度优于其它算法.
其他文献