论文部分内容阅读
针对Fisher线性判别分析(LDA)在进行人脸识别这种小样本问题分类时常常遇到类内散度矩阵Sw奇异,而无法直接应用的问题,提出一种新的线性判别准则,即:定义一个新的准则函数,在对类内散度矩阵无奇异性要求的情况下,找到此准则函数最优的权向量.应用此判别准则和Fisher LDA方法分别在ORL人脸数据库上选取40个人的图像进行识别率的测试,Fisher LDA方法的识别率为0.95,而本文方法的识别率可以达到0.955,优于Fisher LDA方法.