论文部分内容阅读
提出一种基于人工示例训练的神经网络集成入侵检测方法。使用不同的训练数据集训练不同的成员网络,以此提高成员网络之间的差异度。在保证成员网络个数的基础上,选择差异度较大的成员网络构成集成,以提高系统的整体性能。实验结果表明,与当前流行的集成算法相比,该方法在保证较高入侵检测率的前提下,可保持较低的误检率,并对未知入侵也具有较高的检测率。