论文部分内容阅读
深度学习通过建立深层神经网络来模拟人脑进行分析、学习和解释数据,被广泛用于图像识别领域.首先,简述了深度学习在图像识别中的研究现状;其次,介绍了卷积神经网络、深度置信网络、循环神经网络和生成对抗网络等几种常用于图像识别领域的深度学习网络模型;然后,从人脸识别、动作识别、跌倒检测等方面,论述了深度学习在图像识别领域的典型应用;最后,探讨了该领域的研究难点及发展前景.深度学习可以从不同的图像中自动提取相似的特征并进行分类,识别率高,鲁棒性强,推动了人工智能背景下图像识别的发展.无监督学习、对抗网络等将成