论文部分内容阅读
耕地作为一种战略性自然资源,是确保我国粮食生产安全的物质基础和重要前提。荒漠区绿洲性耕地生态环境脆弱,易受风沙侵蚀,对耕地进行持续性精确监测具有更为重要的意义。,本文基于深度学习算法,使用GF-1遥感数据进行耕地及其类别信息提取。为充分利用研究区物候特征,结合冬夏两期遥感影像,将植被指数NDVI值和纹理特征灰度共生矩阵能量值作为特征波段,基于U-Net模型实现耕地分类和提取,主要包括农田(棉花覆盖耕地)、果林耕地及未耕作耕地3种类型。结果表明:仅使用夏季影像对农田的识别准确度即可达90.83%,若加