论文部分内容阅读
针对标准反向传播(BP)算法收敛速度慢和易陷入局部极值等缺陷,提出一种基于粒子群优化的BP神经网络学习算法。采用标准BP梯度下降法调整权值,利用粒子群优化算法进行网络权值及阈值的修正。将该算法与标准BP算法及传统基于粒子群优化BP网络算法进行仿真比较。实验结果表明,该算法能够克服标准BP算法的缺点,性能优于其他2个BP网络优化模型。