【摘 要】
:
随着包装工业的快速发展和人类社会对环保要求的提高,功能性且可生物降解的包装膜材料越来越受到人们的重视.然而,目前市场上的可降解包装膜材料由于成本较高、力学性能差以
【机 构】
:
北京林业大学木质纤维素化学北京重点实验室
【基金项目】
:
国家重点研发计划项目(2017YFD0601004)。
论文部分内容阅读
随着包装工业的快速发展和人类社会对环保要求的提高,功能性且可生物降解的包装膜材料越来越受到人们的重视.然而,目前市场上的可降解包装膜材料由于成本较高、力学性能差以及耐水性低而限制了其发展.采用自组装方法制备木质素微球,并将其沉积在纤维素膜表面,制备出一种新型纤维素基抗紫外薄膜材料.通过扫描电子显微镜(SEM)、红外光谱(FTIR)和激光共聚焦电子显微镜对薄膜的表面性能进行研究.利用抗张实验和紫外透光率测试对纤维素基功能薄膜的力学性能和抗紫外性能进行表征.结果表明:自沉积木质素微球在纤维素膜表面分布均匀,尺寸为1~2μm;纤维素薄膜疏水改性后有助于木质素微球的沉积,且沉积量随着木质素质量浓度的增加而增大.由于木质素微球的引入,纤维素复合膜的抗张强度比对照样增加22%,同时其对UVB屏蔽效果可达94%.
其他文献
碳/碳(C/C)复合材料因密度低、抗热震性能好以及高温力学性能优异等众多优点被广泛应用于航空航天领域,但抗氧化性较差使其应用受到很大限制.将超高温陶瓷(UHTCs)引入C/C复合
选用2601氟橡胶(2601FKM)和2461氟橡胶(2461FKM)为原料,N,N'-双亚肉桂基-1,6-己二胺为硫化剂,制备了加工性能优异、强度适中、低温性能好的氟橡胶共混胶.采用氟谱固体核磁(19
石膏基胶凝材料的力学性能低、耐水性能差是限制其应用的主要原因。本工作通过复掺硫铝酸盐水泥,研究其对建筑石膏水化硬化进程及石膏硬化体力学性能与耐水性能的影响。结果表明,随着硫铝酸盐水泥掺量的增加,建筑石膏标准稠度需水量小幅降低,水化进程加速;10%水泥掺量时,石膏硬化体2 h与3 d的绝干抗折、抗压强度均大幅提升,2 h增幅高达34.8%、29.0%,3 d增幅高达28.8%、34.7%;同时饱水抗折强度由2.35 MPa提升至3.38 MPa,增幅高达43.8%,吸水率相应降低。XRD、SEM、MIP微观