基于ESMD与SVM的电能质量混合扰动识别

来源 :软件导刊 | 被引量 : 0次 | 上传用户:rockgubao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对实际电能质量扰动种类繁多、扰动信号差异不明显、存在多种混合扰动,导致识别电能质量非常困难的情况,提出一种基于极点对称经验模式分解方法(ESMD)和支持向量机(SVM)的电能质量混合扰动信号分类识别新方法。首先,对加入白噪声的混合扰动信号利用小波软阈值去噪处理;其次,利用ESMD将信号分解为不同信号分量,对每类扰动的不同信号分量分别提取样本熵和互样本熵特征值,所有分量特征值构成特征向量;最后利用SVM对扰动信号特征向量进行分类和混合扰动识别。研究表明,该方法对混合扰动识别正确率很高,是一个有效的方法。
其他文献
东巴文字作为人类早期的一种向象形文字、标音文字过渡的图画文字形式,既具有图画文字以图表意特点,又具有现代文字使用简单线条表达含义的特点。东巴文字本身的复杂性使其相
数据共享服务在信息化时代作用凸显,它可以将彼此孤立的信息进行整合并实现其应有价值。对数据共享服务进行研究,提出一种本体模型及其应用架构。详细阐述了模型中的几种对象
针对图像特征局部信息描述不足问题,提出一种基于多区域中心加权深度卷积特征提取方法。首先通过卷积神经网络提取输入图像的卷积层激活特征图,然后通过计算不同通道特征图的差异,选择具有区分性的区域特征图,最后通过多区域权重进行加权聚合,生成用于检索图像特征向量。在不同的建筑物数据集进行实验,结果表明检索精度分别提升了1.2%、0.9%。
软件缺陷定位的有效性和及时性是提升软件质量的关键因素,现有自动缺陷定位方法和手工调试方法具有一定局限性。为解决这一问题,基于高斯过程的缺陷定位方法和软件自动修复对