论文部分内容阅读
本文针对单一模式识别的局限性,提出基于人耳、人脸的多模态识别,并应用PCA改进的SIFT算法对人脸、人耳进行特征提取,并在匹配层进行融合,有效提高了识别率。相较于传统的SIFT算法,改进的SIFT算法具有更强的稳定性和鲁棒性。随着信息技术的发展,基于生物特征的模式识别成为研究热点,现有的识别技术包括人脸识别、指纹识别、虹膜识别等。这些单一模式识别技术中,人脸识别由于具有一定非