论文部分内容阅读
为了提高组合预测精度,将最小二乘支持向量机(LS-SVM)用于确定组合预测的函数关系,提出了基于LS-SVM的非线性组合预测方法;为了提高LS-SVM的学习性能和泛化能力,提出了利用粒子群优化算法(PSO)和K-重交叉验证(CV)相结合的参数寻优方法;最后利用提出的方法对某导弹发射车液压系统的液压油污染度进行了预测,仿真结果表明了提出方法的优越性。