平凡的方法,非凡的功效——应用配方法破解数学竞赛试题

来源 :中学数学研究(华南师范大学版) | 被引量 : 0次 | 上传用户:cx77287728cx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
配方法是中学数学一种最普通、最基本、最简单的方法,它看似平淡无奇,但一些较高难度的数学竞赛试题应用配方法破解,却会收到意想不到的效果,可使问题化难为易、化繁为简.兹举例说明。一、应用配方法破解求值问题例1(2008年庆阳市高中数学竞赛试题)已知实数设a、b、c、d满足a+b+c+d=4,a~2+b~2+c~2+d~2=4,求abcd(1/2)的值.简析对两个已知等式配方得a~2+b~2+c~2+d~2- Matching method is a middle school mathematics, the most common, most basic and easiest way, it seems bland, but some of the more difficult math contest questions with the application method to crack, but will receive unexpected results, you can make The problem is difficult to make things easy to simplify. Here is an example. First, the application of methods to solve the problem of evaluation Example 1 (2008 Qingyang high school mathematics competition test) known real number set a, b, c, d satisfy a + b + c + d = 4, a ~ 2 + b ~ 2 + c ~ 2 + d ~ 2 = 4, find the value of abcd (1/2) .Analysis of the two known equations formula a ~ 2 + b ~ 2 + c ~ 2 + d ~ 2-
其他文献