论文部分内容阅读
研究了在空气阴极微生物燃料电池中修饰方法如硝酸处理和硝酸-氨水酸碱等对XC-72R作为阴极氧还原催化剂催化活性的影响,并且使用傅里叶变换红外光谱(FTIR)、Boehm滴定法和X射线光电子能谱(谱(XPS)等手段对催化剂进行了表征。 FTIR测试证明硝酸处理可引入含氧基团氨水处理可引入含氮基团。另外,还测试了含有不同表面官能团的XC-72R对氧还原的活性,并将其作为阴极催化剂用在MFC中,测试了电池性能。实验表明,经酸碱修饰的XC-72R作为空气阴极MFC的催化剂具有很好的应用前景。“,”The catalytic activity of surface-modified carbon powder, Vulcan XC-72R (XC), for the oxygen reduc-tion reaction (ORR) at an air cathode in a microbial fuel cell (MFC) has been investigated. The effects of treatment with different chemicals such as nitric acid and ammonia on the chemical characteris-tics of XC were studied. The catalysts were characterized by Fourier transform infrared spectrosco-py (FTIR), Boehm titration, and X-ray photoelectron spectroscopy. FTIR analysis showed that the functional groups of the materials were changed by chemical treatment, with nitric acid causing the introduction of oxygen-containing groups, and ammonia leading to the introduction of nitro-gen-containing groups. Electrochemical measurements of MFCs containing various modified carbon materials as ORR catalysts were performed, and the results showed that chemically modified car-bon materials are promising catalysts in MFCs.