论文部分内容阅读
针对造纸废水处理系统的时变性、非线性和复杂性等特点,本文提出一种基于高斯过程回归的软测量模型.基于平方指数协方差、线性协方差和周期性协方差函数组合构建了7种高斯过程回归模型,分别对出水化学需氧量和出水悬浮固形物浓度进行回归预测.此外,还对比了多元线性回归模型、主成分回归模型、偏最小二乘模型、人工神经网络模型和高斯回归模型的预测效果.对比计算结果表明无论是对输出变量的训练拟合还是预测,高斯过程回归模型的拟合效果均优于非高斯过程回归模型.高斯过程回归模型的预测结果表明:对于出水化学需氧量,线性协方差函数