论文部分内容阅读
针对发电站制冷管射线图像的焊缝区域对比度较低、特征不明显,传统方法难以实现精确搜索的问题,提出一种基于深度学习的发电站制冷水管焊缝区域搜索方法。利用限制对比度的自适应直方图均衡化限制图像统计直方图的幅度,抑制噪声放大,得到直方图的累积分布函数,以校正图像的低对比度;利用深度神经网络的24个卷积层提取输入图像的特征、2个全连接层预测图像位置和类别概率,实现水冷壁管焊缝区域的检测,以克服传统模板匹配精度低、时间复杂度高的问题。对100张制冷管射线图片按4∶1∶5分为训练集、验证集和测试集,利用训练集和验