论文部分内容阅读
概率神经网络(PNN)已成功应用于化工过程故障诊断。在概率神经网络中,平滑参数对网络性能有很大的影响,并且很难确定。因此,采用粒子群优化(PSO)算法,寻找最优平滑参数。针对粒子群优化算法中线性变化的惯性权重易使其陷入局部极值问题,采用非线性变化的惯性权重替代线性变化的惯性权重,并将其应用于改进惯性权重粒子群(IIWPSO)算法。将IIWPSO算法应用于概率神经网络中(即IIWPSO-PNN),使其自动搜索并寻找最优的平滑参数用于概率神经网络的训练和测试。与前人提出的线性变化惯性权重、两种非线性变化的惯性