论文部分内容阅读
针对部分网站中新闻话题没有分类或者分类不清等问题,将LDA模型应用到新闻话题的分类中。首先对新闻数据集进行LDA主题建模,根据贝叶斯标准方法选择最佳主题数,采用Gibbs抽样间接计算出模型参数,得到数据集的主题概率分布;然后根据JS距离计算文档之间的语义相似度,得到相似度矩阵;最后利用增量文本聚类算法对新闻文档聚类,将新闻话题分成若干个不同结构的子话题。实验结果显示表明该方法能有效地实现对新闻话题的划分。